Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
J Inherit Metab Dis ; 47(2): 220-229, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38375550

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.


Asunto(s)
Hiperamonemia , Trasplante de Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Humanos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/cirugía , Hiperamonemia/tratamiento farmacológico , Citrulina , Carbamoil Fosfato/metabolismo , Carbamoil Fosfato/uso terapéutico , Amoníaco/metabolismo , Estudios Retrospectivos , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Arginina/uso terapéutico , Ornitina Carbamoiltransferasa
2.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G334-G346, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489865

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) is the most abundant hepatocyte mitochondrial matrix protein. Hypoosmotic stress increases CPS1 release in isolated mouse hepatocytes without cell death. We hypothesized that increased CPS1 release during hypoosmosis is selective and associates with altered mitochondrial morphology. Both ex vivo and in vivo models were assessed. Mouse hepatocytes and livers were challenged with isotonic or hypoosmotic (35 mosM) buffer. Mice were injected intraperitoneally with water (10% body weight) with or without an antidiuretic. Mitochondrial and cytosolic fractions were isolated using differential centrifugation, then analyzed by immunoblotting to assess subcellular redistribution of four mitochondrial proteins: CPS1, ornithine transcarbamylase (OTC), pyrroline-5-carboxylate reductase 1 (PYCR1), and cytochrome c. Mitochondrial morphology alterations were examined using electron microscopy. Hypoosmotic treatment of whole livers or hepatocytes led to preferential or increased mitochondrial release, respectively, of CPS1 as compared with two mitochondrial matrix proteins (OTC/PYCR1) and with the intermembrane space protein, cytochrome c. Mitochondrial apoptosis-induced channel opening using staurosporine in hepatocytes led to preferential CPS1 and cytochrome c release. The CPS1-selective changes were accompanied by dramatic alterations in ultrastructural mitochondrial morphology. In mice, hypoosmosis/hyponatremia led to increased liver vascular congestion and increased CPS1 in bile but not blood, coupled with mitochondrial structural alterations. In contrast, isotonic increase of intravascular volume led to a decrease in mitochondrial size with limited change in bile CPS1 compared with hypoosmotic conditions and absence of the hypoosmosis-associated histological alterations. Taken together, hepatocyte CPS1 is selectively released in response to hypoosmosis/hyponatremia and provides a unique biomarker of mitochondrial injury.NEW & NOTEWORTHY Exposure of isolated mouse livers, primary cultured hepatocytes, or mice to hypoosmosis/hyponatremia conditions induces significant mitochondrial shape alterations accompanied by preferential release of the mitochondrial matrix protein CPS1, a urea cycle enzyme. In contrast, the intermembrane space protein, cytochrome c, and two other matrix proteins, including the urea cycle enzyme ornithine transcarbamylase, remain preferentially retained in mitochondria. Therefore, hepatocyte CPS1 manifests unique mitochondrial stress response compartmentalization and is a sensitive sensor of mitochondrial hypoosmotic/hyponatremic injury.


Asunto(s)
Hiponatremia , Hepatopatías , Animales , Ratones , Carbamoil Fosfato/metabolismo , Ornitina Carbamoiltransferasa/metabolismo , Citocromos c/metabolismo , Hiponatremia/metabolismo , Hiponatremia/patología , Hepatocitos/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Hepatopatías/metabolismo , Mitocondrias/metabolismo , Urea/metabolismo
3.
BMC Med Genomics ; 16(1): 145, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365635

RESUMEN

BACKGROUND: Carbamoyl phosphate synthetase I defect (CPS1D) is a rare disease with clinical case reports mainly in early neonates or adults, with few reports of first onset in late neonatal to childhood. We studied the clinical and genotypic characteristics of children with childhood onset CPS1D caused by two loci mutations (one of these is a rarely reported non-frame shift mutation) in the CPS1. CASE PRESENTATION: We present a rare case of adolescent-onset CPS1D that had been misdiagnosed due to atypical clinical features, and further investigations revealed severe hyperammonemia (287µmol/L; reference range 11.2 ~ 48.2umol/L). MRI of the brain showed diffuse white matter lesions. Blood genetic metabolic screening showed elevated blood alanine (757.06umol/L; reference range 148.8 ~ 739.74umol/L) and decreased blood citrulline (4.26umol/L; reference range 5.45 ~ 36.77umol/L). Urine metabolic screening showed normal whey acids and uracil. Whole-exome sequencing revealed compound heterozygous mutations in the CPS1, a missense mutation (c.1145 C > T) and an unreported de novo non-frame shift mutation (c.4080_c.4091delAGGCATCCTGAT), respectively, which provided a clinical diagnosis. CONCLUSION: A comprehensive description of the clinical and genetic features of this patient, who has a rare age of onset and a relatively atypical clinical presentation, will facilitate the early diagnosis and management of this type of late onset CPS1D and reduce misdiagnosis, thus helping to reduce mortality and improve prognosis. It also provides a preliminary understanding of the relationship between genotype and phenotype, based on a summary of previous studies, which reminds us that it may help to explore the pathogenesis of the disease and contribute to genetic counselling and prenatal diagnosis.


Asunto(s)
Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I , Carbamoil Fosfato , Humanos , Glucógeno Sintasa/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/diagnóstico , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/patología , Mutación , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo
4.
Clin Gastroenterol Hepatol ; 21(12): 3060-3069.e8, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37054752

RESUMEN

BACKGROUND & AIMS: Carbamoyl phosphate synthetase 1 (CPS1) is a highly abundant mitochondrial urea cycle enzyme that is expressed primarily in hepatocytes. CPS1 is constitutively and physiologically secreted into bile but is released into the bloodstream upon acute liver injury (ALI). Given its abundance and known short half-life, we tested the hypothesis that it may serve as a prognostic serum biomarker in the setting of acute liver failure (ALF). METHODS: CPS1 levels were determined using enzyme-linked immunosorbent assay and immunoblotting of sera collected by the ALF Study Group (ALFSG) from patients with ALI and ALF (103 patients with acetaminophen and 167 non-acetaminophen ALF etiologies). A total of 764 serum samples were examined. The inclusion of CPS1 was compared with the original ALFSG Prognostic Index by area under the receiver operating characteristic curve analysis. RESULTS: CPS1 values for acetaminophen-related patients were significantly higher than for non-acetaminophen patients (P < .0001). Acetaminophen-related patients who received a liver transplant or died within 21 days of hospitalization exhibited higher CPS1 levels than patients who spontaneously survived (P = .01). Logistic regression and area under the receiver operating characteristic analysis of CPS1 enzyme-linked immunosorbent assay values improved the accuracy of the ALFSG Prognostic Index, which performed better than the Model for End-Stage Liver Disease, in predicting 21-day transplant-free survival for acetaminophen- but not non-acetaminophen-related ALF. An increase of CPS1 but not alanine transaminase or aspartate transaminase, when comparing day 3 with day 1 levels was found in a higher percentage of acetaminophen transplanted/dead patients (P < .05). CONCLUSION: Serum CPS1 determination provides a new potential prognostic biomarker to assess patients with acetaminophen-induced ALF.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Fallo Hepático Agudo , Humanos , Acetaminofén/efectos adversos , Biomarcadores , Carbamoil Fosfato , Ligasas , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/diagnóstico , Pronóstico , Índice de Severidad de la Enfermedad
5.
Int J Radiat Oncol Biol Phys ; 115(5): 1244-1256, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423742

RESUMEN

PURPOSE: Tumor radiation resistance is the main obstacle to effective radiation therapy for patients with hepatocellular carcinoma (HCC). We identified the role of urea cycle key enzyme carbamoyl phosphate synthetase 1 (CPS1) in radioresistance of HCC and explored its mechanism, aiming to provide a novel radiosensitization strategy for the CPS1-deficiency HCC subtype. METHODS AND MATERIALS: The expression of CPS1 was measured by western blot and immunohistochemistry. Cell growth assay, EdU assay, cell apoptosis assay, cell cycle assay, clone formation assay, and subcutaneous tumor assay were performed to explore the relationship between CPS1 and radioresistance of HCC cells. Lipid metabonomic analysis was used for investigating the effects of CPS1 on lipid synthesis of HCC cells. RNA sequencing and coimmunoprecipitation assay were carried out to reveal the mechanism of CPS1 participating in the regulation of HCC radiation therapy resistance. Furthermore, 10074-G5, the specific inhibitor of c-Myc, was administered to HCC cells to investigate the role of c-Myc in CPS1-deficiency HCC cells. RESULTS: We found that urea cycle key enzyme CPS1 was frequently lower in human HCC samples and positively associated with the patient's prognosis. Functionally, the present study proved that CPS1 depletion could accelerate the development of HCC and induce radiation resistance of HCC in vitro and in vivo, and deficiency of CPS1 promoted the synthesis of some lipid molecules. Regarding the mechanism, we uncovered that inhibition of CPS1 upregulated CyclinA2 and CyclinD1 by stabilizing oncoprotein c-Myc at the posttranscriptional level and generated radioresistance of HCC cells. Moreover, inactivation of c-Myc using 10074-G5, a specific c-Myc inhibitor, could partially attenuate the proliferation and radioresistance induced by depletion of CPS1. CONCLUSIONS: Our results recapitulated that silencing CPS1 could promote HCC progression and radioresistance via c-Myc stability mediated by the ubiquitin-proteasome system, suggesting that targeting c-Myc in CPS1-deficiency HCC subtype may be a valuable radiosensitization strategy in the treatment of HCC.


Asunto(s)
Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Carbamoil Fosfato , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/química , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/metabolismo , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/patología , Urea , Lípidos , Línea Celular Tumoral
6.
Bioorg Chem ; 130: 106253, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356370

RESUMEN

CPS1, the rate-limiting enzyme that controls the first reaction of the urea cycle, is responsible for converting toxic ammonia into non-toxic urea in mammals. While disruption of the functions of CPS1 leads to elevated ammonia and nerve damage in the body, mainly manifested as urea cycle disorder. Moreover, accumulating evidence has recently revealed that CPS1 is involved in a variety of human diseases, including CPS1D, cardiovascular disease, cancers, and others. In particular, CPS1 expression varies among cancers, being overexpressed in some cancers and downregulated in others, suggesting that CPS1 may be a promising cancer therapeutic target. In addition, some small-molecule inhibitors of CPS1 have been reported, which have not been confirmed experimentally in malignancies, meaning their future role is far from certain. In this review, we describe the structure and function of CPS1, highlight its important roles in various human diseases, and further discuss the potential diagnostic and therapeutic implications of small molecule compounds targeting CPS1.


Asunto(s)
Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I , Animales , Humanos , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/patología , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/terapia , Carbamoil Fosfato/metabolismo , Amoníaco/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/química , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Urea , Mamíferos/metabolismo
7.
Plant Biol (Stuttg) ; 25(1): 131-141, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36178874

RESUMEN

Carbamoyl phosphate synthetase (CPS) catalyses the synthesis of ammonia carbamoyl phosphate (CP), which plays a key role in the biosynthesis of arginine and pyrimidine nucleotides. There are two subunits of the CPS enzyme in Populus trichocarpa, CarA (small subunit) and CarB (large subunit). Only when they coexist can CPS catalyse synthesis of CP. However, it is not clear how CPS responds to nitrogen (N) to affect arginine and pyrimidine nucleotide biosynthesis. In this study, bioinformatics methods were used to analyse the expression patterns of genes encoding CarA and CarB, and qRT-PCR and RNA-seq were used to investigate their molecular responses under different N concentrations. Phylogenetic analysis revealed that the phylogenetic trees of CarA and CarB had similar topologies. qRT-PCR showed that the PtCarA and PtCarB genes were regulated by N, while their N-regulated patterns differed in different tissues. The expression patterns of PtCarA and PtCarB show a significant positive correlation according to qRT-PCR and RNA-seq. The analysis of promoter cis-acting elements showed that the promoter regions of PtCarA1, PtCarA2 and PtCarB contained some identical cis-acting elements. According to analysis of the phylogenetic tree, expression patterns and promoter elements, we speculate that there might be coevolution among PtCarA1, PtCarA2 and PtCarB. This study provides valuable information for further understanding the function of CPS in poplar, especially for N response, and provides new ideas for studying the evolution of gene families related to heteromultimers.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Carbamoil Fosfato/metabolismo , Filogenia , Nitrógeno , Arginina/genética
8.
J Microbiol Biotechnol ; 32(12): 1527-1536, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36384810

RESUMEN

Escherichia coli can use allantoin as its sole nitrogen source under anaerobic conditions. The ureidoglycolate produced by double release of ammonia from allantoin can flow into either the glyoxylate shunt or further catabolic transcarbamoylation. Although the former pathway is well studied, the genes of the latter (catabolic) pathway are not known. In the catabolic pathway, ureidoglycolate is finally converted to carbamoyl phosphate (CP) and oxamate, and then CP is dephosphorylated to carbamate by a catabolic carbamate kinase (CK), whereby ATP is formed. We identified the ybcF gene in a gene cluster containing fdrA-ylbE-ylbF-ybcF that is located downstream of the allDCE-operon. Reverse transcription PCR of total mRNA confirmed that the genes fdrA, ylbE, ylbF, and ybcF are co-transcribed. Deletion of ybcF caused only a slight increase in metabolic flow into the glyoxylate pathway, probably because CP was used to de novo synthesize pyrimidine and arginine. The activity of the catabolic CK was analyzed using purified YbcF protein. The Vmax is 1.82 U/mg YbcF for CP and 1.94 U/mg YbcF for ADP, and the KM value is 0.47 mM for CP and 0.43 mM for ADP. With these results, it was experimentally revealed that the ybcF gene of E. coli encodes catabolic CK, which completes anaerobic allantoin degradation through substrate-level phosphorylation. Therefore, we suggest renaming the ybcF gene as allK.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Alantoína , Carbamoil Fosfato/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glioxilatos , Proteínas de la Membrana , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo
9.
PLoS Biol ; 20(10): e3001437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36194581

RESUMEN

ATP is universally conserved as the principal energy currency in cells, driving metabolism through phosphorylation and condensation reactions. Such deep conservation suggests that ATP arose at an early stage of biochemical evolution. Yet purine synthesis requires 6 phosphorylation steps linked to ATP hydrolysis. This autocatalytic requirement for ATP to synthesize ATP implies the need for an earlier prebiotic ATP equivalent, which could drive protometabolism before purine synthesis. Why this early phosphorylating agent was replaced, and specifically with ATP rather than other nucleoside triphosphates, remains a mystery. Here, we show that the deep conservation of ATP might reflect its prebiotic chemistry in relation to another universally conserved intermediate, acetyl phosphate (AcP), which bridges between thioester and phosphate metabolism by linking acetyl CoA to the substrate-level phosphorylation of ADP. We confirm earlier results showing that AcP can phosphorylate ADP to ATP at nearly 20% yield in water in the presence of Fe3+ ions. We then show that Fe3+ and AcP are surprisingly favoured. A wide range of prebiotically relevant ions and minerals failed to catalyse ADP phosphorylation. From a panel of prebiotic phosphorylating agents, only AcP, and to a lesser extent carbamoyl phosphate, showed any significant phosphorylating potential. Critically, AcP did not phosphorylate any other nucleoside diphosphate. We use these data, reaction kinetics, and molecular dynamic simulations to infer a possible mechanism. Our findings might suggest that the reason ATP is universally conserved across life is that its formation is chemically favoured in aqueous solution under mild prebiotic conditions.


Asunto(s)
Carbamoil Fosfato , Difosfatos , Acetilcoenzima A , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Cinética , Nucleósidos , Organofosfatos , Agua
10.
PLoS One ; 17(9): e0274019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36149917

RESUMEN

Ornithine carbamoyltransferases (OTCs) are involved in the arginine deiminase (ADI) pathway and in arginine biosynthesis. Two OTCs in a pair are named catalytic OTC (cOTC) and anabolic OTC (aOTC). The cOTC is responsible for catalyzing the third step of the ADI pathway to catabolize citrulline into carbamoyl phosphate (CP), as well as ornithine, and displays CP cooperativity. In contrast, aOTC catalyzes the biosynthesis of citrulline from CP and ornithine in vivo and is thus involved in arginine biosynthesis. Structural and biochemical analyses were employed to investigate the CP cooperativity and unidirectional function of two sequentially similar OTCs (32.4% identity) named Ps_cOTC and Ps_aOTC from Psychrobacter sp. PAMC 21119. Comparison of the trimeric structure of these two OTCs indicated that the 80s loop of Ps_cOTC has a unique conformation that may influence cooperativity by connecting the CP binding site and the center of the trimer. The corresponding 80s loop region of in Ps_aOTC was neither close to the CP binding site nor connected to the trimer center. In addition, results from the thermal shift assay indicate that each OTC prefers the substrate for the unidirectional process. The active site exhibited a blocked binding site for CP in the Ps_cOTC structure, whereas residues at the active site in Ps_aOTC established a binding site to facilitate CP binding. Our data provide novel insights into the unidirectional catalysis of OTCs and cooperativity, which are distinguishable features of two metabolically specialized proteins.


Asunto(s)
Carbamoil Fosfato , Psychrobacter , Secuencia de Aminoácidos , Arginina , Sitios de Unión , Carbamoil Fosfato/química , Catálisis , Citrulina , Ciclohexanonas , Ornitina/química , Ornitina Carbamoiltransferasa/metabolismo , Psychrobacter/metabolismo
11.
J Clin Lab Anal ; 36(10): e24692, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36098904

RESUMEN

OBJECTIVE: The sensitivity and specificity of current biomarkers for gastric cancer were insufficient. The aim of the present study was to screen novel biomarkers and determine the diagnostic values of ornithine aminotransferase (OAT) and carbamoyl phosphate synthetase 1 (CPS1) for detecting gastric cancer. METHODS: With stable isotope tags, we labelled an initial discovery group of four paired gastric cancer tissue samples and identified with LC-ESI-MS/MS. A validation group of 159 gastric cancer samples and 30 healthy controls were used to validate the candidate targets. GSEA was used to explore the pathways activated in gastric cancer. RESULTS: Four hundred and thirty one proteins were found differentially expressed in gastric cancer tissues. Of these proteins, OAT and CPS1 were found over-expressed in gastric cancer patients, with sensitivity of 70.4% (95% CI: 63.3%-77.6%) and specificity of 80.5% (95% CI: 74.3%-86.7%) for ornithine aminotransferase, and with sensitivity of 68.6% (95% CI: 61.3%-75.8%) and specificity of 73% (95% CI: 66%-79.9%) for carbamoyl phosphate synthetase 1. The co-expression of OAT and CPS1 in gastric cancer tissues has a sensitivity of 81% (95% CI: 73.2%-88.8%) and specificity of 89% (95% CI: 83%-95%). Furthermore, both OAT and CPS1 were overexpressed in patients with local invasion T3 and T4 stages than those in patients with T1 and T2 stages. The co-expression of OAT and CPS1 was strongly correlated with histological grade I 68% (95% CI: 58.7%-77.3%) and TNM stage I/II 52% (95% CI: 42%-62%). The areas under ROC curves were up to 0.758 for the co-expression of OAT and CPS1 in gastric cancer. GSEA results showed that two gene sets and 30 gene sets were activated in OAT high- and CPS1 high-expression patients with gastric cancer, respectively. CONCLUSIONS: The present findings indicated a tight correlation between the co-expression of OAT and CPS1 and the histological grade, local invasion, and TNM stages of gastric cancer. Therefore, OAT and CPS1 might be predictors for gastric cancer invasion and potential targets for anticancer drug design for gastric cancer.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Amoníaco , Biomarcadores , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Carbamoil Fosfato/metabolismo , Humanos , Ornitina-Oxo-Ácido Transaminasa/genética , Neoplasias Gástricas/patología , Espectrometría de Masas en Tándem
12.
World J Gastroenterol ; 28(28): 3644-3665, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36161055

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic, nonspecific intestinal inflammatory disease. Acupuncture and moxibustion is proved effective in treating UC, but the mechanism has not been clarified. Proteomic technology has revealed a variety of biological markers related to immunity and inflammation in UC, which provide new insights and directions for the study of mechanism of acupuncture and moxibustion treatment of UC. AIM: To investigate the mechanism of electroacupuncture (EA) and herb-partitioned moxibustion (HM) on UC rats by using proteomics technology. METHODS: Male Sprague-Dawley rats were randomly divided into the normal (N) group, the dextran sulfate sodium (DSS)-induced UC model (M) group, the HM group, and the EA group. UC rat model was prepared with 3% DSS, and HM and EA interventions at the bilateral Tianshu and Qihai acupoints were performed in HM or EA group. Haematoxylin and eosin staining was used for morphological evaluation of colon tissues. Isotope-labeled relative and absolute quantification (iTRAQ) and liquid chromatography-tandem mass spectrometry were performed for proteome analysis of the colon tissues, followed by bioinformatics analysis and protein-protein interaction networks establishment of differentially expressed proteins (DEPs) between groups. Then western blot was used for verification of selected DEPs. RESULTS: The macroscopic colon injury scores and histopathology scores in the HM and EA groups were significantly decreased compared to the rats in the M group (P < 0.01). Compared with the N group, a total of 202 DEPs were identified in the M group, including 111 up-regulated proteins and 91 down-regulated proteins, of which 25 and 15 proteins were reversed after HM and EA interventions, respectively. The DEPs were involved in various biological processes such as biological regulation, immune system progression and in multiple pathways including natural killer cell mediated cytotoxicity, intestinal immune network for immunoglobulin A (IgA) production, and FcγR-mediated phagocytosis. The Kyoto Encyclopedia of Genes and Genomes pathways of DEPs between HM and M groups, EA and M groups both included immune-associated and oxidative phosphorylation. Network analysis revealed that multiple pathways for the DEPs of each group were involved in protein-protein interactions, and the expression of oxidative phosphorylation pathway-related proteins, including ATP synthase subunit g (ATP5L), ATP synthase beta subunit precursor (Atp5f), cytochrome c oxidase subunit 4 isoform 1 (Cox4i1) were down-regulated after HM and EA interventions. Subsequent verification of selected DEPs (Synaptic vesicle glycoprotein 2A; nuclear cap binding protein subunit 1; carbamoyl phosphate synthetase 1; Cox4i1; ATP synthase subunit b, Atp5f1; doublecortin like kinase 3) by western blot confirmed the reliability of the iTRAQ data, HM and EA interventions can significantly down-regulate the expression of oxidative phosphorylation-associated proteins (Cox4i1, Atp5f1) (P < 0.01). CONCLUSION: EA and HM could regulate the expression of ATP5L, Atp5f1, Cox4i1 that associated with oxidative phosphorylation, then might regulate immune-related pathways of intestinal immune network for IgA production, FcγR-mediated phagocytosis, thereby alleviating colonic inflammation of DSS-induced UC rats.


Asunto(s)
Colitis Ulcerosa , Electroacupuntura , Moxibustión , Puntos de Acupuntura , Adenosina Trifosfato , Animales , Carbamoil Fosfato , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/terapia , Sulfato de Dextran/toxicidad , Proteínas de Dominio Doblecortina , Complejo IV de Transporte de Electrones , Eosina Amarillenta-(YS) , Glicoproteínas , Inmunoglobulina A , Inflamación , Ligasas , Masculino , Proteoma , Proteómica , Proteínas de Unión a Caperuzas de ARN , Ratas , Ratas Sprague-Dawley , Receptores de IgG , Reproducibilidad de los Resultados
13.
J Med Virol ; 94(10): 5015-5025, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35760734

RESUMEN

Early diagnosis and prognosis evaluation are of great significance to hepatitis E virus (HEV)-related acute liver failure (HEV-ALF) patients. We collected serum samples from 200 health controls (HCs), 200 patients with acute hepatitis E (AHE), and 200 HEV-ALF patients to evaluate serum exosome-derived carbamoyl phosphate synthase 1 (CPS1) levels and determine its diagnostic and prognostic value. The exosome-derived CPS1 levels in the HEV-ALF group were significantly higher than those in the AHE and HCs groups. The AUC of exosome-derived CPS1 to predict the occurrence of HEV-ALF was 0.850 (0.811-0.883). Both logistical regression and orthogonal partial least squares discriminant analysis (OPLS-DA) showed that exosome-derived CPS1 is an independent risk factor for HEV-ALF. The exosome-derived CPS1 levels were positively correlated with organ failure and the outcomes in HEV-ALF patients. The exosome-derived CPS1 levels in the worsening group were significantly higher than those in the fluctuating and the improving groups. The AUC of serum exosome-derived CPS1 to predict 30-day mortality was 0.829 (0.770-0.879), which was significantly greater than that of the Child-Pugh, KCH, and MELD models. The level of serum exosome-derived CPS1 might serve as a promising diagnostic and prognostic biomarker for HEV-ALF patients, which may provide better guidance for the diagnosis, prognosis, and treatment of HEV-ALF patients.


Asunto(s)
Exosomas , Virus de la Hepatitis E , Fallo Hepático Agudo , Carbamoil Fosfato , Humanos , Fallo Hepático Agudo/diagnóstico , Pronóstico
14.
Clin Chim Acta ; 526: 55-61, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973183

RESUMEN

PURPOSE: Carbamoyl phosphate synthetase 1 (CPS1) deficiency affects the first step of urea cycle and is a severe form of urea cycle disorder (UCD). The severity of hyperammonemic encephalopathy determines the clinical course of UCDs. Here, we describe the genetic and clinical characteristics of CPS1 deficiency in Korea. PATIENT AND METHODS: This study included seven patients with CPS1 deficiency genetically confirmed from January 1992 to September 2020. The peak ammonia level during the first crisis, the half time of peak ammonia level, the initial plasma amino acid levels, and neurological outcomes were compared between CPS1 deficiency and two common UCDs (i.e., 17 patients with argininosuccinate synthetase 1 deficiency and 24 patients with ornithine transcarbamylase deficiency). RESULT: Eleven CPS1 mutations were identified, including 10 novel mutations. Eight mutations were missense. Six patients with CPS1 deficiency had neonatal type. The peak ammonia level, initial glutamate level, and accompanying rate of irreversible neurological damages were highest in patients with CPS1 deficiency. The patient with late-onset CPS1 deficiency responded dramatically to N-carbamylglutamate treatment. CONCLUSION: The clinical manifestations of CPS1 deficiency were the most severe among UCDs. Considering the high proportion of missense mutations, responsiveness to N-carbamylglutamate would be evaluated in a future study.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco) , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I , Trastornos Innatos del Ciclo de la Urea , Carbamoil-Fosfato Sintasa (Amoniaco)/deficiencia , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/diagnóstico , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/genética , Carbamoil Fosfato , Humanos , Recién Nacido , Mutación , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Trastornos Innatos del Ciclo de la Urea/genética
15.
Intern Med ; 61(9): 1387-1392, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670888

RESUMEN

A 36-year-old man experienced severely impaired consciousness twice after drinking because of hyperammonemia. No abnormal blood tests were found other than ammonia levels. However, magnetic resonance imaging (MRI) showed atrophy of the brain parenchyma. One the second occasion, the patient suffered severe impairment of consciousness, and because of seizures and glossoptosis, mechanical ventilation was started. Urea cycle disorders (UCDs) were assumed to be involved. Genetic testing revealed a monoallelic mutation of the carbamoyl phosphate synthase 1 (CPS1) gene. When transient hyperammonemia of unknown cause occurs repeatedly in adults, an active investigation for UCDs should be conducted.


Asunto(s)
Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I , Hiperamonemia , Trastornos Innatos del Ciclo de la Urea , Adulto , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/complicaciones , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/genética , Carbamoil Fosfato , Estado de Conciencia , Humanos , Hiperamonemia/complicaciones , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Masculino , Mutación/genética , Trastornos Innatos del Ciclo de la Urea/complicaciones
16.
Appl Microbiol Biotechnol ; 105(8): 3265-3276, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33837829

RESUMEN

Carbamoyl phosphate is an important precursor for L-arginine and pyrimidines biosynthesis. In view of this importance, the cell factory should enhance carbamoyl phosphate synthesis to improve related compound production. In this work, we verified that carbamoyl phosphate is essential for L-arginine production in Corynebacterium sp., followed by engineering of carbamoyl phosphate synthesis for further strain improvement. First, carAB encoding carbamoyl phosphate synthetase II was overexpressed to improve the synthesis of carbamoyl phosphate. Second, the regulation of glutamine synthetase increases the supply of L-glutamine, providing an effective substrate for carbamoyl phosphate synthetase II. Third, carbamate kinase, which catalyzes inorganic ammonia synthesis carbamoyl phosphate, was screened and selected to assist in carbamoyl phosphate supply. Finally, we disrupted ldh (encoding lactate dehydrogenase) to decrease by-production formation and save NADH to regenerate ATP through the electron transport chain. Subsequently, the resulting strain allowed a dramatically increased L-arginine production of 68.6 ± 1.2 g∙L-1, with an overall productivity of 0.71 ± 0.01 g∙L-1∙h-1 in 5-L bioreactor. Stepwise rational metabolic engineering based on an increase in the supply of carbamoyl phosphate resulted in a gradual increase in L-arginine production. The strategy described here can also be implemented to improve L-arginine and pyrimidine derivatives. KEY POINTS: • The L-arginine production strongly depended on the supply of carbamoyl phosphate. • The novel carbamoyl phosphate synthesis pathway for C. crenatum based on carbamate kinase was first applied to L-arginine synthesis. • ATP was regenerated followed with the disruption of lactate formation.


Asunto(s)
Carbamoil Fosfato , Corynebacterium , Arginina , Corynebacterium/genética , Ingeniería Metabólica
17.
Fungal Biol ; 125(3): 184-190, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33622534

RESUMEN

Carbamoyl phosphate synthetase is involved in arginine biosynthesis in many organisms. In this study, we investigate the biological function of Cpa1, a small subunit of carbamoyl phosphate synthetase of Colletotrichum gloeosporioides. The deletion of the CPA1 gene affected vegetative growth, arginine biosynthesis, and fungal pathogenicity. Genetic complementation with native CPA1 fully recovered all these defective phenotypes. We observed that Cpa1-RFP fusion protein is localized at the mitochondria, which is consistent with Cpa2, a large subunit of carbamoyl phosphate synthetase. We identified the proteins that interact with Cpa1 by using the two-hybrid screen approach, and we showed that Dut1 interacts with Cpa1 but without Cpa2 in vivo. Dut1 is dispensable for hyphal growth, appressorial formation, and fungal pathogenicity. Interestingly, the Dut1-Cpa1 complex is localized at the mitochondria. Further studies showed that Dut1 regulates Cpa1-Cpa2 interaction in response to arginine. In summary, our studies provide new insights into how Cpa1 interacts with its partner proteins to mediate arginine synthesis.


Asunto(s)
Colletotrichum , Arginina , Carbamoil Fosfato , Ligasas , Virulencia
18.
Extremophiles ; 25(1): 15-24, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33084979

RESUMEN

Here, we have analyzed the enzyme ornithine carbamoyltransferase (OCTase) in different classes of microorganisms belonging to psychrophiles, mesophiles and thermophiles. This OCTase catalyzes the formation of citrulline from carbamoyl phosphate (CP) and ornithine (ORN) in arginine biosynthesis pathway and has certain unique adaptations to regulate metabolic pathways in extreme conditions. The tertiary structure of OCTase showed two binding domains, the CP domain and ORN-binding domain at N and C terminals, respectively. We propose general acid-base catalysis in Pseudomonas gessardii between His259 and Asp220 in which later may act as a recipient of proton in the process. The comparative docking analysis showed that substrate-binding loops have been evolved to accommodate their lifestyles across the physiological temperature range where two substrates bind on two distinct loops in psychrophiles and mesophiles, whereas both the substrates bind on a single-substrate-binding loop in thermophiles and bring down the flexibility of the active site pocket to improve its evolutionary fitness.


Asunto(s)
Carbamoil Fosfato/metabolismo , Extremófilos/enzimología , Ornitina Carbamoiltransferasa/química , Pseudomonas/enzimología , Sitios de Unión , Catálisis , Simulación del Acoplamiento Molecular , Ornitina Carbamoiltransferasa/genética , Dominios Proteicos
19.
PLoS One ; 15(2): e0228487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027716

RESUMEN

Understanding how enzymes achieve their tremendous catalytic power is a major question in biochemistry. Greater understanding is also needed for enzyme engineering applications. In many cases, enzyme efficiency and specificity depend on residues not in direct contact with the substrate, termed remote residues. This work focuses on Escherichia coli ornithine transcarbamoylase (OTC), which plays a central role in amino acid metabolism. OTC has been reported to undergo an induced-fit conformational change upon binding its first substrate, carbamoyl phosphate (CP), and several residues important for activity have been identified. Using computational methods based on the computed chemical properties from theoretical titration curves, sequence-based scores derived from evolutionary history, and protein surface topology, residues important for catalytic activity were predicted. The roles of these residues in OTC activity were tested by constructing mutations at predicted positions, followed by steady-state kinetics assays and substrate binding studies with the variants. First-layer mutations R57A and D231A, second-layer mutation H272L, and third-layer mutation E299Q, result in 57- to 450-fold reductions in kcat/KM with respect to CP and 44- to 580-fold reductions with respect to ornithine. Second-layer mutations D140N and Y160S also reduce activity with respect to ornithine. Most variants had decreased stability relative to wild-type OTC, with variants H272L, H272N, and E299Q having the greatest decreases. Variants H272L, E299Q, and R57A also show compromised CP binding. In addition to direct effects on catalytic activity, effects on overall protein stability and substrate binding were observed that reveal the intricacies of how these residues contribute to catalysis.


Asunto(s)
Escherichia coli/enzimología , Ornitina Carbamoiltransferasa/química , Ornitina Carbamoiltransferasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Sitios de Unión , Carbamoil Fosfato/química , Carbamoil Fosfato/metabolismo , Catálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Ornitina/metabolismo , Ornitina Carbamoiltransferasa/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Especificidad por Sustrato/genética
20.
Enzyme Microb Technol ; 129: 109354, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31307577

RESUMEN

Carbamoyl phosphate synthetase (CPS) is a key enzyme in both pyrimidine and arginine biosynthesis. However, it is inhibited strongly by uridine monophosphate (UMP), which is an intermediate of the de-novo synthesis of pyrimidine nucleoside. In this study, the native carbamoyl phosphate synthetase, from Escherichia coli, was evolved by site-directed mutation and casting error-prone PCR. Compared with the wild-type, the variant N1015 F had released sensitivity to UMP and exhibited 100% of the initial activity in the presence of UMP. Variant K1006A exhibited 0.14-fold improvement in initial activity and kept above 65% of relative activity under the saturated concentration of inhibitor. Structure analysis of variants demonstrated that the reduced sensitivity to inhibitor was largely attributed to the decreased hydrogen bonds, which could reduce the binding affinity with UMP. Also, Phe with large side chain could narrow the binding pocket and generate more steric hindrance. Based on the results in this study, N1015F was an ideal alternative catalyst for the wild-type CPS for pyrimidine biosynthesis.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Carbamoil Fosfato/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Reacción en Cadena de la Polimerasa , Ingeniería de Proteínas , Pirimidinas/metabolismo , Uridina Monofosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...